Dependence of jumping performance on muscle properties when humans use only calf muscles for propulsion.

نویسندگان

  • F E Zajac
  • R W Wicke
  • W S Levine
چکیده

Using optimal control techniques, maximum height jumps were simulated for humans who held their body rigid except for the ankle. Three dynamic models of ankle torque generation based on known calf muscle properties were used. Force and kinematics obtained from the simulations using nominal and perturbed parameters were compared with data obtained from humans who had performed this type of jump. One torque model incorporated the series elastic, force-length and force-velocity properties of muscle. Our results suggest that higher jumps would be achieved by those who have the most compliant and fastest contracting muscles. It was also found that height attained depended much more on the ability of muscles to generate isometric force at long lengths than at short lengths. Studies of forward and strictly vertical jumps using similar computer methods suggest that for any maximal jump the optimal strategy is first to achieve a unique state (position, velocity and acceleration) with the feet flat on the ground, and then to maximally activate one's calf muscles until lift-off.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of massage and compression treatment on performance in three consecutive days

OBJECTIVE: To determine the effects of massage treatment plus 24hours of elastic calf compression on delayed onset of muscle soreness following maximum calf-raise exercises during three consecutive days. METHODS: Fourteen female students (aged 20–22 yr) who had regularly performed moderate exercise were submitted to maximum calf-raise exercises of 1 movement per 3 seconds till exhaustion. Seven...

متن کامل

How important are skeletal muscle mechanics in setting limits on jumping performance?

Jumping is an important locomotor behaviour used by many animals. The power required to perform a jump is supplied by skeletal muscle. The mechanical properties of skeletal muscle, including the power it can produce, are determined by its composition, which in turn reflects trade-offs between the differing tasks performed by the muscle. Recent studies suggest that muscles used for jumping are r...

متن کامل

Leg design and jumping technique for humans, other vertebrates and insects.

Humans, bushbabies, frogs, locusts, fleas and other animals jump by rapidly extending a pair of legs. Mathematical models are used to investigate the effect muscle properties, leg design and jumping technique have on jump height. Jump height increases with increased isometric force exerted by leg muscles, their maximum shortening speeds and their series compliances. When ground forces are small...

متن کامل

Muscle performance during frog jumping: influence of elasticity on muscle operating lengths.

A fundamental feature of vertebrate muscle is that maximal force can be generated only over a limited range of lengths. It has been proposed that locomotor muscles operate over this range of lengths in order to maximize force production during movement. However, locomotor behaviours like jumping may require muscles to shorten substantially in order to generate the mechanical work necessary to p...

متن کامل

Sway‐dependent changes in standing ankle stiffness caused by muscle thixotropy

KEY POINTS The passive stiffness of the calf muscles contributes to standing balance, although the properties of muscle tissue are highly labile. We investigated the effect of sway history upon intrinsic ankle stiffness and demonstrated reductions in stiffness of up to 43% during conditions of increased baseline sway. This sway dependence was most apparent when using low amplitude stiffness-mea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomechanics

دوره 17 7  شماره 

صفحات  -

تاریخ انتشار 1984